Building Response Model
Class Name
Location in Objects Pane
- Models > Model > Infrastructure > Building > Building Response
Model Description
Model Form
$$T = \exp ( - {\theta _1}) \cdot {H^{{\theta _2}}}$$
$$V = \exp \left( { - {\theta _3} - {\theta _4} \cdot H} \right) \cdot {{2 + \left( {\alpha - 2} \right) \cdot \left( {\alpha - 1} \right)} \over 8}$$
$${\delta _y} = {{{T^2}} \over {4{\pi ^2}}} \cdot {{V \cdot g} \over H}$$
$$\mu = \exp ({\theta _5}) \cdot {H^{ - {\theta _6}}} \cdot {{10 + \left( {\alpha - 2} \right) \cdot \left( {\alpha - 1} \right)} \over {16}}$$
$${\delta _u} = \mu \cdot {\delta _y}$$
$$\kappa = \exp \left( { - {\theta _7} \cdot Sa \cdot {\alpha ^{ - {\theta _8}}}} \right)$$
$$\ln \left( {{\delta _p}} \right) = {\theta _9} \cdot \ln \left( {{\delta _y}} \right) + {\theta _{10}} \cdot \ln \left( {{\delta _u}} \right) - {\theta _{11}} \cdot \ln \left( V \right) - {\theta _{12}} \cdot \ln \left( \kappa \right) + {\theta _{13}} \cdot \ln \left( {Sa} \right) + {\theta _{14}} \cdot Sa - {\theta _{15}} + {\sigma _1} \cdot {\varepsilon _1}$$
$$\ln \left( {{A_p}} \right) = - {\theta _{16}} \cdot \ln \left( {{\delta _y}} \right) + {\theta _{17}} \cdot \ln \left( V \right) - {\theta _{18}} \cdot \ln \left( \mu \right) + {\theta _{19}} \cdot \ln \left( \kappa \right) + {\theta _{20}} \cdot \ln \left( {Sa} \right) - {\theta _{21}} + {\sigma _2} \cdot {\varepsilon _2}$$
where Building response model gets some of the parameters from the Building Information model.
- For further information on this model, refer to Mahsuli, M., Haukaas, T. (2013) and Mahsuli, M., Haukaas, T. (2013).
DDM sensitivities
Properties
Object Name
- Name of the object in Rt
- Allowable characters are upper-case and lower-case letters, numbers, and underscore (“_”).
- The name is unique and case-sensitive.
Display Output
- Determines whether the model is allowed to print messages to the Output Pane.
- A Building Information Model object that returns the height, \({H}\), and the code level, \({\alpha}\), to this model.
- A Constant object that has the value of the natural period of the building.
Sa
- \({S{a}}\) = 5%-damped elastic spectral acceleration at the building site at the natural period of the building
Theta1 - Theta8
- \({\theta_1}\) - \({\theta_8}\)= Sub-model parameters
Theta9 - Theta15
- \({\theta_9}\) - \({\theta_{15}}\)= Peak drift ratio model parameters
Theta16 - Theta21
- \({\theta_{16}}\) - \({\theta_{21}}\)= Peak acceleration model parameters
Sigma1
- \({\sigma_1}\) = Standard deviation of the peak drift ratio model error
Sigma2
- \({\sigma_2}\) = Standard deviation of the peak acceleration model error
Epsilon1
- \({\varepsilon_1}\) = Peak drift ratio model error
Epsilon2
- \({\varepsilon_2}\) = Peak acceleration model error
Output
- \({\delta_p}\) = Peak drift ratio
- \({A_p}\) = Peak acceleration
- The output is an automatically generated generic response object, which takes the object name of the model plus “Response”.
Right-click Menu
Remove
References
- Mahsuli, M., Haukaas, T. (2013) “Seismic risk analysis with reliability methods, part I: Models,” Structural Safety, 42, pp. 54-62 (DOI)
- Mahsuli, M., Haukaas, T. (2013) “Seismic risk analysis with reliability methods, part II: Analysis,” Structural Safety, 42, pp. 63-74 (DOI)