﻿ Building Response Model

# Building Response Model

## Class Name

• RBuildingResponseModel

## Location in Objects Pane

• Models > Model > Infrastructure > Building > Building Response

## Model Description

### Model Form

$$T = \exp ( - {\theta _1}) \cdot {H^{{\theta _2}}}$$ $$V = \exp \left( { - {\theta _3} - {\theta _4} \cdot H} \right) \cdot {{2 + \left( {\alpha - 2} \right) \cdot \left( {\alpha - 1} \right)} \over 8}$$ $${\delta _y} = {{{T^2}} \over {4{\pi ^2}}} \cdot {{V \cdot g} \over H}$$ $$\mu = \exp ({\theta _5}) \cdot {H^{ - {\theta _6}}} \cdot {{10 + \left( {\alpha - 2} \right) \cdot \left( {\alpha - 1} \right)} \over {16}}$$ $${\delta _u} = \mu \cdot {\delta _y}$$ $$\kappa = \exp \left( { - {\theta _7} \cdot Sa \cdot {\alpha ^{ - {\theta _8}}}} \right)$$ $$\ln \left( {{\delta _p}} \right) = {\theta _9} \cdot \ln \left( {{\delta _y}} \right) + {\theta _{10}} \cdot \ln \left( {{\delta _u}} \right) - {\theta _{11}} \cdot \ln \left( V \right) - {\theta _{12}} \cdot \ln \left( \kappa \right) + {\theta _{13}} \cdot \ln \left( {Sa} \right) + {\theta _{14}} \cdot Sa - {\theta _{15}} + {\sigma _1} \cdot {\varepsilon _1}$$ $$\ln \left( {{A_p}} \right) = - {\theta _{16}} \cdot \ln \left( {{\delta _y}} \right) + {\theta _{17}} \cdot \ln \left( V \right) - {\theta _{18}} \cdot \ln \left( \mu \right) + {\theta _{19}} \cdot \ln \left( \kappa \right) + {\theta _{20}} \cdot \ln \left( {Sa} \right) - {\theta _{21}} + {\sigma _2} \cdot {\varepsilon _2}$$ where Building response model gets some of the parameters from the Building Information model.
• For further information on this model, refer to Mahsuli, M., Haukaas, T. (2013) and Mahsuli, M., Haukaas, T. (2013).

• No

## Properties

### Object Name

• Name of the object in Rt
• Allowable characters are upper-case and lower-case letters, numbers, and underscore (“_”).
• The name is unique and case-sensitive.

### Display Output

• Determines whether the model is allowed to print messages to the Output Pane.

### Building Information Model

• A Building Information Model object that returns the height, $${H}$$, and the code level, $${\alpha}$$, to this model.

### Period Information

• A Constant object that has the value of the natural period of the building.

### Sa

• $${S{a}}$$ = 5%-damped elastic spectral acceleration at the building site at the natural period of the building

### Theta1 - Theta8

• $${\theta_1}$$ - $${\theta_8}$$= Sub-model parameters

### Theta9 - Theta15

• $${\theta_9}$$ - $${\theta_{15}}$$= Peak drift ratio model parameters

### Theta16 - Theta21

• $${\theta_{16}}$$ - $${\theta_{21}}$$= Peak acceleration model parameters

### Sigma1

• $${\sigma_1}$$ = Standard deviation of the peak drift ratio model error

### Sigma2

• $${\sigma_2}$$ = Standard deviation of the peak acceleration model error

### Epsilon1

• $${\varepsilon_1}$$ = Peak drift ratio model error

### Epsilon2

• $${\varepsilon_2}$$ = Peak acceleration model error

## Output

• $${\delta_p}$$ = Peak drift ratio
• $${A_p}$$ = Peak acceleration
• The output is an automatically generated generic response object, which takes the object name of the model plus “Response”.